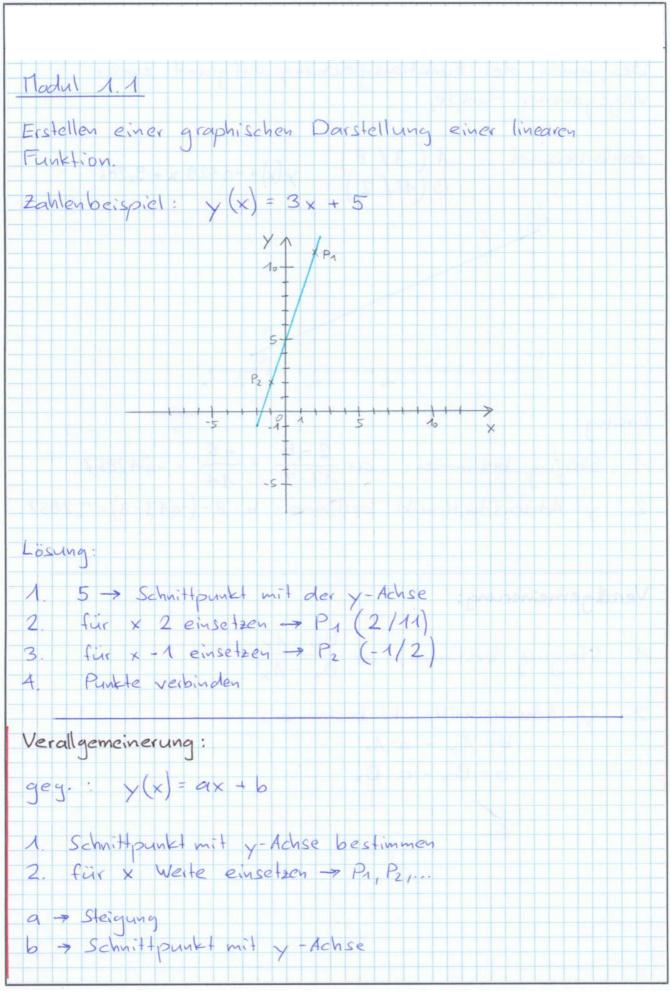
Modul 1

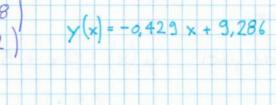
Lineare Gleichungen


Inhalt:

1.1	Erstellen einer graphischen Darstellung	Seite 2
1.2	Bestimmen der Funktionsgleichung aufgrund zweier Punkte	Seite 3
1.3	Verschieben einer Geraden in horizontaler Richtung	Seite 4
1.4	Verschieben einer Geraden in vertikaler Richtung	Seite 6
1.5	Senkrechte in einem Punkt auf einer Geraden errichten	Seite 8
1.6	Bestimmen der kleinsten Entfernung einer Geraden von einem Punkt	Seite 10

Schule: BerufsBildungBaden, 2003

Lehrperson: Werner Graber


Quelle: www.markusbaumi.ch

Modul 1.2

Bestimmen der Funktionsgleichung aufgrund zweier vorgegebener Punkte

Zahlenbeispiel: A(3/8) y(x) = -0.429 x + 9.286

1. Steigung bestimmen: $a = \frac{2-8}{17-3} = \frac{-6}{14} = -0.42857...$ 2. y-Achsenschnittpunkt bestimmen: $b = 8 - (-0.43 \cdot 3) = 9.2857...$

Verallgemeinerung:

1. Steigung bestimmen: a= Bx - Ax

2. y- Achsenschnittpunkt bestimmen: b= Ay - a. Ax b= By- a Bx

Modul 1.3

Verschieben einer Greraden in horizontaler Richtung um die Strecke C.

zahlenbeispiel:
$$A(2/3)$$

 $B(12/10)$ $Y(x)=0,7x+1,6$

$$A' = (8/3)$$

 $B' = (18/10)$ $Y'(x) = 0, 7x - 2, 6$

$$a=a=\frac{10-3}{12-2}=\frac{7}{10}=\frac{0.7}{10}$$

Losung:

y - Koordinalen bleiben gleich

2. Steigung bleibt gleich

3. y - Achsen schnittpunkt bestimmen

h'= b - c · a = 1,6 -

Verallgemeinerung:

- 1. x Koordinaten mit c addieren, wenn pos. Verschiebung oder subtrahieren, wenn neg. Verschiebung.
 - · y-Koordinaten bleiben gleich.

$$A(A_{\times}/A_{\times}) \rightarrow A'(A_{\times}+c/A_{\times})$$

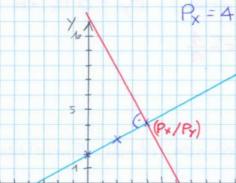
 $B(B_{\times}/B_{\times}) \rightarrow B'(B_{\times}+c/B_{\times})$

- 2. Die Steigung ist bei allen Geraden gleich.
- 3. Neuen y Achsenschnittpunkt bestimmen:

Modul 1.4 Verschieben einer Geraden in vertikaler Richtung um die Strecke c. A (5/2) B (21/9) Zahlenbeispiel: y(x) = 0,44.x -0,19 c = +3 A'(5/5) y(x) = 0,44 x + 2,81 3' (21/12) $a=a'=\frac{9-2}{21-5}=0,4375$ b=2-0,44.5=-0,1875 6'=5-0.44.5=2,8125 y-Koordinaten mit c addieren -> A', B' x-Koordinaten bleiben gleich 2. Steigung bleibt gleich y- Achsenschnittpunkt bestimmen b'=b+c=-0,19+3=2,81

Verallgemeinerung:

- 1. · y-Koordinaten mit addieren, wenn pos. Verschie bung oder subtrahieren, wenn neg. Verschie bung.
 - · x Koordinaten bleiben gleich.


- 2. Die Steigung ist bei allen Greraden gleich.
- 3. Neven y-Achsenschnittpunkt bestimmen:

Modul 1.5

Senkredite Grerade in einem Punkt auf einer gegebenen Geraden errichten

Zahlenbeispiel: · Gerade $y(x) = \frac{1}{2} \times +2$ Zohlenbeispiel: Versetzung

· x-Koordinale des Punktes auf der Geraden

Losung:

- Steigung a' der gesuchten Greraden y'(x) = a' x + b' bestimmen:

 -> Vorzeichen wechseln

 a =
 - $a' = -\frac{2}{1}$ -> Kehrwert
- 3. b' bestimmen: Peinsetzen A = -2.4 + b' -> 6' = 12

$$y'(x) = -2x + 12$$

Verd	allgeme	inerung:				
0.00	alaga.	edie (ne	ando si(x)	-014		
9	jeben.	- one or	rade y(x)	CI III		
	•	der x-	west des	Schnittpunk	tes: ITx	
Lös	ungswe	q:				
1.	y - We	it des!	Punktes b	estimmen:	Py = a.Px	46
2.	Steigu	ing a b	estimmen:	a = / a		
		zeichen wer				
			Reziproken)			
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	120000	L VEN		
3	V- AcV	nsenschnit	tounkt b'	berechnen	durch Eins	etzen
	J J		o' = Py + 1/a	· Px		
			15) - 6/26	1		
		7	x) = a'x +	Ь		
						9/4/25

Modul 1.6
Bestimmung der Kleinsten Entfernung einer Geraden von
einem Punkt.
Zahlenbeispiel: Geradengleichung $\chi(x) = -0.5x + 4$ Punk + P (2/8)
Punk+ P (2/8)
YA
70 / 72
S
-2 0 2 ×
12-1 Ya
The hone were
Losungsweg:
1. Gleichung der Geraden aufstellen, die senkrecht auf der gegebenen Geraden steht und durch P geht:
der gegebenen Geraden steht und durch P geht:
Steigung (gemäss Modul 1.5) a'=-(-7)
$y_2 = a'x + b'$
and P einselten $8=2\cdot2+b$ $\rightarrow y_2(x)=2\cdot x+4$
2. Schnittpunkt der beiden Geraden durch Gleichsetzen
bestimmen: $y_1 = y_2 \rightarrow -\frac{1}{2}x + 4 = 2x + 4$ $\rightarrow 2,5x = 0 \rightarrow x = 0$
$\rightarrow 2.5x = 0 \rightarrow x = 0$
y-Koordinate des Schnittpunktes durch einsetzen:
$y(0) = -\frac{1}{2} \cdot 0 + 4 = 4 \rightarrow S(0/4)$

3. Distanz von S und P

Differenz der x-Koordinaten : $\Delta x = P_X - S_X = 2 - 0 = 2$ y-Koordinaten : $\Delta y = P_Y - S_Y = 8 - 4 = 4$

aus Pythagoras folgt die Distanz d = Jax2 + by21

Verallgemeinerung:

- 1. Senkrechte Gerade auf die gegebene Gerade durch den Punkt P bestimmen (gemäss Modul 1.5)
- 2. Schnittpunkt beider Geraden bestimmen:

$$y_1 = a_1x + b_1 = -\frac{1}{a_1} \times + P_y - P_x \cdot a_1 \rightarrow S_x$$

 $S_y = a_1 \cdot S_x + b_1 \quad (S_x / S_y)$

3. Distanz von Sund P

$$\Delta x = P_X - S_X$$

$$\Delta y = P_Y - S_Y$$

$$\Delta y = P_Y - S_Y$$